\(\int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx\) [177]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 113 \[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {(A+B) \cos (e+f x) \log (1-\sin (e+f x))}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {(A-B) \cos (e+f x) \log (1+\sin (e+f x))}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-1/2*(A+B)*cos(f*x+e)*ln(1-sin(f*x+e))/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+1/2*(A-B)*cos(f*x+e)*ln
(1+sin(f*x+e))/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3048, 2816, 2746, 31} \[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {(A-B) \cos (e+f x) \log (\sin (e+f x)+1)}{2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {(A+B) \cos (e+f x) \log (1-\sin (e+f x))}{2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(A + B*Sin[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

-1/2*((A + B)*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + ((A
- B)*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3048

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[
(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b + a*B)/(2*a*b), Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e +
f*x]], x], x] + Dist[(B*c + A*d)/(2*c*d), Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] /; Fre
eQ[{a, b, c, d, e, f, A, B}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A+B) \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{2 a}+\frac {(A-B) \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{2 c} \\ & = \frac {(a (A-B) \cos (e+f x)) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {((A+B) c \cos (e+f x)) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {((A-B) \cos (e+f x)) \text {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {((A+B) \cos (e+f x)) \text {Subst}\left (\int \frac {1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {(A+B) \cos (e+f x) \log (1-\sin (e+f x))}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {(A-B) \cos (e+f x) \log (1+\sin (e+f x))}{2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.73 \[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\cos (e+f x) \left (B \log (\cos (e+f x))+A \left (\log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )\right )\right )}{f \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[(A + B*Sin[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

-((Cos[e + f*x]*(B*Log[Cos[e + f*x]] + A*(Log[1 - Tan[(e + f*x)/2]] - Log[1 + Tan[(e + f*x)/2]])))/(f*Sqrt[a*(
1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]]))

Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.16

method result size
default \(\frac {\left (A \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-A \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-B \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-B \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )\right ) \cos \left (f x +e \right )}{f \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(131\)
parts \(\frac {A \cos \left (f x +e \right ) \left (\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )\right )}{f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}+\frac {B \left (-\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )\right ) \cos \left (f x +e \right )}{f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(163\)

[In]

int((A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(A*ln(-cot(f*x+e)+csc(f*x+e)+1)-A*ln(csc(f*x+e)-cot(f*x+e)-1)-B*ln(-cot(f*x+e)+csc(f*x+e)+1)+B*ln(2/(1+cos
(f*x+e)))-B*ln(csc(f*x+e)-cot(f*x+e)-1))*cos(f*x+e)/(-c*(sin(f*x+e)-1))^(1/2)/(a*(1+sin(f*x+e)))^(1/2)

Fricas [F]

\[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)^2), x)

Sympy [F]

\[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {A + B \sin {\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}\, dx \]

[In]

integrate((A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral((A + B*sin(e + f*x))/(sqrt(a*(sin(e + f*x) + 1))*sqrt(-c*(sin(e + f*x) - 1))), x)

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)/(sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(1/2)),x)

[Out]

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(1/2)), x)